Mechanical Actions

GRADE 8

PHYSICS

Mechanical Action & Force

- The person is pushing a car. He is exerting a **mechanical action** on the car.
- He is exerting a **force** on the car.

A force is a mechanical action exerted by a body on another.

Effects of a Mechanical Action

Exerting a mechanical action on the play dough:

So, it deforms its shape.

Effects of a Mechanical Action

The wheel was at rest. The boy moved the wheel. So, there exists a mechanical action.

It sets the body in motion / creates motion.

Effects of a Mechanical Action

The ball was already moving. The boy moved the ball to the second direction.

 \rightarrow There exists a mechanical action.

So, it modify the motion.

State the Effect of each of the following Mechanical Actions.

Mechanical Action	Effect
The football player kicks the ball that was initially at rest.	Set the body in motion
The football player kicks the moving ball.	Modify the direction of motion
The teacher is tearing a paper.	Deform the shape
The man's hand exerts a force on the orange.	Deform the shape
The worker broke the board.	Deform the shape

Characteristics of a Force

Point of application	 It is the place/ point where the force is being exerted.
Line of action	 It is the line along which the action is exerted. It can be vertical, horizontal, or oblique.
Direction	• It maybe upward, downward, to the left, to the right, etc
Magnitude	 It is measured by a spring balance or dynamometer. SI unit of force is expressed in Newton (N)

Application 1

A person is pushing a wooden crate as shown in the figure. The force exerted is of magnitude 250 N. List the characteristics of the applied force.

- **magnitude:** 250 N
- **Point of application:** A (the point of contact between the man and the crate)
- **Direction:** upward to the right
- Line of action: oblique

Application 2

A carpenter hits on the head of a nail by using a hammer. Specify the line of action and direction of the force.

Line of action: vertical Direction: downward

Representation of a Force

A force is represented by a **vector** \vec{F} , which is a **directed line segment**. It also has a point of application, direction, line of action, and magnitude.

In order to represent a vector, you need to choose a **scale**.

Representing a force by a vector

Given that the magnitude of the exerted force is 10 N.

Scale: **1cm → 5 N** ?? Cm **→** 10 N

$$X = \frac{1 \times 10}{5} = 2 \text{ cm}$$